
This article was downloaded by: [Memorial University of Newfoundland]
On: 14 May 2013, At: 08:17
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Pavement Engineering
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/gpav20

Statistical and dimensional analysis of hot-mix asphalt
mixture characteristics on asphalt pavement analyser
rutting behaviour
Yong-Rak Kim a , Minki Hong b , David H. Allen c & Seong-Wan Park d
a Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701,
South Korea
b Department of Civil Engineering, University of Nebraska, Lincoln, NE, 68588-0531, USA
c College of Engineering and Computer Science, University of Texas-Pan American, Edinburg,
TX, 78539, USA
d Department of Civil and Environmental Engineering, Dankook University, Yongin-si,
Gyeonggi-do, 448-701, South Korea
Published online: 19 Jan 2012.

To cite this article: Yong-Rak Kim , Minki Hong , David H. Allen & Seong-Wan Park (2013): Statistical and dimensional analysis
of hot-mix asphalt mixture characteristics on asphalt pavement analyser rutting behaviour, International Journal of Pavement
Engineering, 14:2, 103-115

To link to this article:  http://dx.doi.org/10.1080/10298436.2011.633706

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gpav20
http://dx.doi.org/10.1080/10298436.2011.633706
http://www.tandfonline.com/page/terms-and-conditions


Statistical and dimensional analysis of hot-mix asphalt mixture characteristics on asphalt
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This study presents a statistical and dimensional approach as a simple and efficient means to characterise the effects of
individual mixture variables on the performance behaviour resulting from the laboratory tests of hot-mix asphalt (HMA)
mixtures. The approach is to find the material and/or mixture variables that significantly affect the performance test results
and to further assess the level of significance of variables, with the goal of improving the current understanding of HMA
performance tests and their practical applications. To demonstrate the approach, two sets of asphalt pavement analyser
(APA) test data from Nebraska and one set of data from Kentucky are statistically analysed based on the multiple linear
regression technique. A dimensional analysis based on the Buckingham p-theorem is also performed, and the analysis
results are compared with the statistical analysis results. Both analyses present comparable results in that the binder stiffness
of HMA mixtures is the most significant variable affecting APA performance test results when the mixtures meet volumetric
requirements.

Keywords: hot-mix asphalt; multiple linear regression; dimensional analysis; Buckingham p-theorem; asphalt pavement
analyser

Introduction

Performance testing of hot-mix asphalt (HMA) mixtures

has been considered a core effort for better design of

pavement structures, since it provides more accurate

characterisation of properties and performance potential of

the paving mixtures. The initial development of the

Superpave mixture design under the Strategic Highway

Research Program in the early 1990s included various

mixture performance tests in the form of Superpave

performance testing programme. Before the Superpave

programme, the traditional Marshall and Hveem mixture

design methods had also required mixture stability tests to

provide some measure of the mix quality, even though the

Marshall and Hveem stability tests were empirical.

Numerous research projects have demonstrated that

the Superpave volumetric mixture design method alone is

not sufficient to ensure reliable mixture performance over

a wide range of materials, traffic and climatic conditions.

In addition, state department of transportation (DOT)

engineers and industry practitioners have sought certain

form of simple performance tests to help ensure that a

quality product is produced. To that end, numerous efforts

have been made by a number of researchers through

various studies (Witczak et al. 2002, Kandhal and Cooley

2003, Christensen and Bonaquist 2004, AASHTO TP62

2007) to develop performance tests of HMA mixtures so

that one can better assess mixture quality and conduct

pavement structural design in a more optimised manner.

Consequently, the recent development of the asphalt

mixture performance tester and the mechanistic-empirical

pavement design guide programmes include some of

the performance tests that account for primary HMA

distresses such as fatigue cracking, rutting and thermal

cracking.

Performance tests of HMA mixtures generally present

a high testing variability. This is because of the significant

heterogeneity of the mixtures where multiple phases are

mixed in a wide length scale. The high testing variability

consequently needs many replicate specimens to draw

reasonable conclusions, which is time-consuming and

costly. In addition, it has also been recognised that

performance test results are sensitive to and controlled by

properties of individual mix constituents, interactions

between constituents and proportioning of constituents.

Therefore, it is attractive to have certain approaches that

can provide the mechanical or physical relationships

between characteristics of mixture variables and mixture

performance behaviour so that the performance testing can

be understood and conducted in a more efficient way,

which can significantly reduce testing specimens.
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Recently, some studies have been pursued to develop

such useful techniques relating mixture constituents and

their composition to engineering properties and perform-

ance behaviour of mixtures. For example, various

microstructure approaches (Buttlar and You 2001,

Masad et al. 2001, Guddati et al. 2002, Papagiannakis

et al. 2002, Sadd et al. 2003, Soares et al. 2003, Dai et al.

2005, Kim and Buttler 2005, Kim et al. 2006) with the aid

of numerical techniques have been actively attempted by

researchers. This is because the microstructure approaches

can account for the different properties of mixture

constituents, the heterogeneity of the mixtures, and the

damage evolution characteristics in a more realistic length

scale without requiring a large number of laboratory tests

of mixture specimens. Microstructure approaches typi-

cally rely on individual mixture constituents and

microstructure geometry of the mixtures to characterise

overall mixture properties. However, the intensive

computational efforts, theoretical complexities and some-

what incomplete predicting power of the approaches have

also been reported as challenges for their practical

implementation.

Alternatively, dimensional analysis seems attractive as

a simple means of obtaining relationships that describe

some complex phenomenon even without understanding

the detail mechanism of the phenomenon. Dimensional

analysis can contribute to the construction of a physical

model and offers an idea for the form of solutions for

theoretical analyses and experimental design. This process

thus can potentially find the sensitivity and/or significance

among the variables (such as mixture characteristics and

performance results) affecting a physical problem (such as

HMA performance tests). Similarly, statistical analyses

(Kandhal and Mallick 2001, Kandhal and Cooley 2002,

McCann and Sebaaly 2003, Tarefder et al. 2003, Bausano

and Williams 2009, Li et al. 2010) including the multiple

linear regression analysis have been used when

experimental data have several independent variables, as

observed in typical HMA performance testing. The

general purpose of multiple linear regression analysis is

to investigate the linear relationship between several

independent variables (i.e. materials and mixture variables

associated with performance test) and a dependent variable

(i.e. performance test result). Multiple linear regression

analysis can also be used to identify the independent

variables significantly affecting the performance results by

comparing two test statistics: F-ratio and t-ratio, to a

specified significance level (Neter et al. 1996, Draper and

Smith 1998).

This study attempts the statistical and dimensional

approach as simple and efficient methods to characterise

the effects of individual mixture variables on the overall

HMA performance behaviour. The integrated approach

presented herein can find the material and/or mixture

variables that significantly affect the performance test

results and the level of significance of variables without

directly relying on the sophisticated but technically

challenging mechanistic modelling approaches such as

the microstructure modelling. Therefore, with the aid of

research outcomes, the current HMA performance tests

and their practical applications can be improved based on

the better understanding of the physical relationships

between mixture variables and performance behaviour

resulting from laboratory tests of HMA mixtures.

Research methodology

Figure 1 briefly illustrates the process of the research

method employed for this study. A statistical method

based on multiple linear regression analysis and a

dimensional analysis based on the Buckingham p-theorem

Raw data
collection

Data
formation for

analyses

Buckingham π
Theorem
-Significance

Data
Diagnostics

-Multi-Collinearity
-Outliers

-Normality

Multiple
Linear

Regression
-Significance

Statistical  analysis

Dimensional  analysis

Compare

Figure 1. Process of the analysis methods employed for this study.
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were selected for this study. The multiple linear regression

analysis has often been used and widely applied to various

types of HMA test results, while the Buckingham

p-theorem for the dimensional analysis has not frequently

been used for the experimental design and analysis of

HMA test results despite its simple and straightforward

characteristics.

As illustrated in the figure, the two analysis methods

were individually applied to the common set of test data.

This is to conduct a sensitivity analysis for the variables

related to an arbitrary HMA performance test through the

application of the dimensional analysis with the same

performance test data used for the statistical analysis.

Analysis results from the Buckingham p-theorem can then

be compared with the results from the multiple linear

regression statistical analysis.

To demonstrate the approach presented herein, two

sets (i.e. mixture types) of asphalt pavement analyser

(APA) data from Nebraska and one set of data obtained

from Kentucky were used. The APA test and its results

were selected for this study as a representative example of

HMA performance tests, since the APA has been widely

used in many states to evaluate rutting potential of HMA

mixtures. APA test data are relatively abundant than other

performance test results, since many state DOTs including

Nebraska have performed the APA test for their project

mixtures as a quality control/quality assurance tool,

because APA testing is very simple, rapid and easy to

perform.

Data collection

As mentioned above, two sets of data from Nebraska APA

mixtures (designated as SP-4 and SP-5 hereafter) and one

set of APA data from Kentucky were collected from field

projects for the analyses. Table 1 presents the data-sets

collected, their mixture characteristics with the required

material properties and some basic statistics (i.e.

maximum, minimum, mean and standard deviation) of

key variables considered in this study. As can be seen in

the table, Nebraska SP-4 was used for roadways with

intermediate traffic volume [1–10 million equivalent

single axle loads (ESALs)], whereas Nebraska’s SP-5 and

the Kentucky mixture were used for roadways with high-

traffic volume.

From the data-set, it was observed that two nominal

maximum aggregate sizes (NMAS), 9.5 and 12.5mm were

used for all three mixture types. Three binder performance

grades (PG 64-22, 64-28 and 70-28) have been used for

Nebraska SP-4, while four different (PG 64-22, 64-28,

70-22 and 70-28) and three different (PG 64-22, 70-22 and

76-22) types of PG binders were used to produce Nebraska

Table 1. APA data-sets collected, their mixture characteristics with the required properties and some basic statistics.

Mixture variables Nebraska SP-4 Nebraska SP-5 Kentucky mix

NMAS (mm) 9.5, 12.5 9.5, 12.5 9.5, 12.5
PG binders 64-22, 64-28, 70-28 64-22, 64-28, 70-22, 70-28 64-22, 70-22, 76-22
Air voids (%)
Maximum, minimum 6.0, 3.5 5.6, 3.7 4.3, 3.8
Mean, standard deviation 4.30, 0.54 4.35, 0.56 4.07, 0.12
Required 3–5 3–5 3–5

Asphalt content (%)
Maximum, minimum 6.8, 4.6 6.5, 4.5 6.3, 5.4
Mean, standard deviation 5.5, 0.42 5.6, 0.51 5.8, 0.30
Required N/A N/A N/A

CAA1 (%)
Maximum, minimum 99, 85 100, 91 100, 100
Mean, standard deviation 93, 3.8 97, 1.8 100, 0.0
Required 85 95 100

CAA2 (%)
Maximum, minimum 98, 80 100, 90 100, 100
Mean, standard deviation 88, 4.9 94, 2.7 100, 0.0
Required 80 90 100

FAA (%)
Maximum, minimum 50, 45 48, 45 48, 45
Mean, standard deviation 45.4, 0.64 45.5, 0.62 45.9, 1.02
Required 45 45 45

% Passing at the PCS
Maximum, minimum 73.9, 27.5 62.9, 34.3 57.0, 28.0
Mean, standard deviation 49.8, 8.48 52.7, 7.17 42.4, 8.76
Required N/A N/A N/A

Traffic volume (106 ESALs) 1 to ,10 $10 $30
No. of APA data collected 91 22 16
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SP-5 and the Kentucky mixture, respectively. Table 1 also

presents the number of APA data collected for each

mixture.

Data formation for analyses

The materials and/or mixture variables to be considered

for analysis needed to be selected from the collected raw

data and the corresponding materials/mixture information.

Based on the results from the dimensional analysis, which

is discussed in later sections, six factors (binder PG,

aggregate gradation, NMAS, aggregate angularity, air

voids and asphalt content) were selected for the statistical

analysis. The binder PG represents the binder’s stiffness

characteristics, and is expected to affect the APA rut data.

The size and shape factors of aggregates, such as

gradation, angularity and NMAS were included in the

analysis. For the mixtures, two variables (air voids and

asphalt content) were selected as primary factors because

they are crucial indicators identifying a mixture’s

volumetric characteristics and are also expected to affect

the APA rut depth.

For a more detailed statistical analysis, the aggregate

angularity factor was categorised into three variables:

coarse aggregate angularity value with one or more

fractured faces (denoted by CAA1), coarse aggregate

angularity value with two or more fractured faces (denoted

by CAA2) and fine aggregate angularity (FAA). In the

case of aggregate gradation, the gradation factor needed to

be quantified in numbers to be implemented in the

statistical analyses. In an attempt to quantify the

characteristics of aggregate gradation, the percentage of

aggregates that passed through the primary control sieve

(PCS) in the Bailey method was used. Traditionally, the

designation between fine and coarse aggregates is whether

or not a particle passed the 4.75-mm sieve (No. 4). In the

Bailey method, the coarse and fine designation depends on

the NMAS of the mixture. The PCS in the Bailey method

is simply obtained by multiplying the NMAS by a factor

0.22. Correspondingly, the PCS in the Bailey method will

vary for different types of mixtures by physically

determining the boundary between coarse and fine

aggregates in the combined blend (Vavrik et al. 2002).

Once the PCS has been determined for each mixture, the

corresponding percent passing through the PCS is then

captured as an indicator to characterise coarseness of the

mixture gradation. As exemplified in Figure 2, a finer

gradation shows a higher percentage of aggregate passage

through the PCS than a coarser gradation.

After all the independent variables were selected,

individual data sheets for each mixture (the two Nebraska

mixtures and the Kentucky mixture) were developed in a

tabular form as shown in Table 2, which shows the SP-4

data sheet for the purpose of illustration. Table 2 presents

specific values for the independent variables, with the APA

rut result as the dependent variable. In the case of the

binder PG, the numbers 1, 2 and 3 were used to represent

64-22, 64-28 and 70-28, respectively, for the purpose of

statistical analyses. For the other variables, real exper-

imental values obtained were used. Instead of using the

APA rut depth (in mm), a different quantity, rut ratio (d)

was used as simply represented by the following equation:

d ¼
RDT

N
£ 100; ð1Þ

0

10

20

30

40

50

60

70

80

90

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Sieve size (mm)^0.45

P
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t 
p
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si

n
g

Finer gradation
Coarser gradation
Maximum density line

PCS

Figure 2. Illustration of the PCS for 12.5-mm NMAS
gradations (coarse and fine).

Table 2. Data sheet (SP-4) developed for statistical analysis.

No. NMAS PG Air voids (%) Binder (%) CAA1 CAA2 FAA % at PCS Rut ratio

1 12.5 2 4.2 5.9 94 90 45.7 47.7 0.0156
2 12.5 1 3.9 5.1 89 86 45.4 43.7 0.0222
3 12.5 2 4.8 5.7 99 94 50.1 48.6 0.0251
4 9.5 2 4.0 6.8 95 90 46.9 56.0 0.0280

†
†
†

90 12.5 1 5.0 5.6 91 82 45.5 44.9 1.2956
91 12.5 2 4 5.1 95 89 45.2 39.7 1.8115
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where RDT ¼ total rut depth (in mm) monitored and N

¼ corresponding number of loading cycles at the RDT.

The rut ratio is a replacement for the rut depth in this

study, because the APA test automatically stopped when

the wheel loading reached 8000 cycles before a 12mm rut

depth or when the total rut depth exceeded 12mm before

the 8000-cycle wheel loading. To provide an identical

measure of a mixture’s rut potential for any case, the rut

ratio (d) was calculated and used.

For the dimensional analysis using the Buckingham

p-theorem, a total of nine material-mixture factors related

to the APA testing were considered. The HMA specimen for

the APA testing was assumed to be an isotropic, elastic

composite composed of aggregates, asphalt binder and air

voids. Four factors representing the properties of each

mixture component [i.e. elastic stiffness of the aggregate

(Es), elastic stiffness of the asphalt binder (Eb), Poisson’s

ratio of the aggregate (ns) and Poisson’s ratio of the asphalt

binder (nb)] and five factors related to the geometry of each

mixture component [i.e. volume fraction of air voids (Vv),

volume fraction of asphalt binder (Vb), volume fraction of

aggregate (Vs), NMAS represented by S and a factor G

representing the aggregate gradation] were included for the

analysis, as illustrated in Figure 3. Other factors associated

with loading [applied force (F) and loading width (w)] and

the bulk APA specimen geometry [height (H) and diameter

(D) of APA specimen] were also involved in the

dimensional analysis, but they were fixed variables from

testing performed. The APA rut result (d), which is the

output from the APA testing, was related to various input

variables; material properties and the geometric character-

istics of each mixture component in a mixture.

To simplify the application of the Buckingham p-

theorem, the aggregate angularity factors were excluded,

and the same indicator (the percentage of aggregates that

passed through the PCS) that was employed for the

statistical analysis was used to represent the characteristics

of the aggregate gradation by using the factorG. In addition,

mechanical behaviour of the asphalt binder was assumed as

elastic, although its actual constitutive behaviour is

viscoelastic and/or viscoplastic. This assumption was

made in this study because the dimensional analysis

becomes extremely complicated when the time-dependent

material behaviour is involved. It is considered a reasonable

assumption for the purpose of this study, since the elastic

modulus of binder can still represent the effect of binder

stiffness on APA mixture performance.

With all of the variables involved, a data sheet for

Nebraska mixture SP-4 was developed as shown in Table 3

and used for the analysis in order to find the significance of

Figure 3. APA testing configuration for the dimensional analysis.

Table 3. Data sheet (SP-4) developed for dimensional analysis.

No. Fixed variables S (mm) G Eb (Pa) Vv (mm3) Vs (mm3) Vb (mm3) d

1 F (N) ¼ 445 12.5 47.7 3076 55.665 1117.28 152.416 0.0156
2 w (mm) ¼ 25 12.5 43.7 3218 51.689 1137.16 136.512 0.0222
3 D (mm) ¼ 150 12.5 48.6 3359 63.617 1129.21 132.536 0.0251
4 H (mm) ¼ 75 9.5 56.0 3076 53.014 1114.63 157.718 0.0280
† ns ¼ 0.15 †
† nb ¼ 0.45 †
† Es (GPa) ¼ 60.9 †
90 12.5 44.9 2401 66.268 1115.95 143.139 1.2956
91 12.5 39.7 2401 53.014 1131.86 140.488 1.8115
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each input variable affecting the APA test output (i.e. rut

ratio) by relating each input to the output. As presented in

the table, specific values for each factor of individual APA

specimen were obtained. In the case of the elastic stiffness

of the asphalt binder, the dynamic modulus at 608C was

obtained by using a dynamic shear rheometer (DSR) in

torsional loading mode. Elastic modulus of aggregates was

measured by the nano-indentation technique (Khanna et al.

2003). Eight measurements were made resulting in a mean

of 60.9 GPa and a standard deviation of 4.0 GPa. Since the

effect of the elastic stiffness of the aggregates on the APA

test results was expected to be trivial compared to the

effect of the asphalt binder stiffness due to a considerably

large difference in the stiffness of the two materials, the

elastic stiffness of aggregate was fixed for this study with

the same value of 60.9 GPa. Constant values of 0.15 and

0.45 were assumed and used as Poisson’s ratios for the

aggregate and binder, respectively.

Statistical analysis by multiple linear regression

Before using the data sheets to perform multiple linear

regression for the statistical analysis, three key data

diagnostic checks (i.e. multi-collinearity, outliers and

normality) were performed. Correlations among indepen-

dent variables need to be checked before beginning

multiple linear regression analysis, because high corre-

lations among variables cause multi-collinearity, which

typically leads to a faulty result. Variables demonstrating

high correlations were found and modified into another

variable so that multi-collinearity could be avoided. The

next step was to detect outliers in the data-set. Outliers are

extreme observations in comparison to the rest of the data.

When there are outliers in a data-set, a statistical analysis

is performed with values not representing the overall data.

Moreover, outliers affect data normality. Multiple linear

regression analysis is valid for a data-set where normality

holds. Thus, the investigation of outliers is an important

step. To detect outliers, the DFBETAS technique

(Heiberger and Holland 2004, Montgomery et al. 2006)

was employed in this study. After removing the extreme

observations (outliers), a data normality check was then

performed. When the number of data is less than 5000, the

Shapiro–Wilk test (Shapiro and Wilk 1965) is often used

for the data normality check. Thus, the Shapiro–Wilk test

was utilised in this study to verify data normality.

After completing the data diagnostic tests, the multiple

linear regression analysis was conducted. As mentioned

earlier, multiple linear regression analysis is a method that

finds the statistical model that defines the experimental

data based on several independent variables and a

dependent variable. The regression analysis outcomes

are first processed using the analysis of variance

(ANOVA), which yields a test statistic (typically, the

F-ratio) that determines whether or not the independent

variables explain some of the variation in the dependent

variable. A typical format and entities in an ANOVA table

from the multiple linear regression analysis with n number

of data and p number of independent variables in the

model are presented in Table 4. The mean square due to

error (MSE) and the mean square due to regression (MSR)

are given in the fourth column of the ANOVA table. The

F-ratio in the fifth column is simply calculated by dividing

MSR by MSE and provides a statistic for testing whether

the independent variables explain some of the variation in

the response variable (dependent variable).

The significance of the test results is justified by

comparing the F-ratio computed from the experimental

data with the pre-determined F-ratio based on the

significance level (referred to as a value) specified, the

number of data collected and the number of independent

variables involved. The significance level (a) is specified

by users and is typically equal to 0.001, 0.01, 0.05 or 0.10.

If the probability, where the F-ratio obtained from the

experimental data is equal to or greater than the pre-

determined F-ratio, is less than the specified significance

level (a value), there is sufficient evidence to say that at

least one independent variable contributes to the variation

in the dependent variable. Thus, the model resulting from

the multiple linear regression analysis is considered to be

one where a meaningful relationship exists between a

dependent variable and independent variables.

When the testing analysis is significant, a multiple

linear regression model relating variables can be formed

with parameter estimates of individual significant

independent variables. The level of significance of each

independent variable is then identified based on a statistic,

the t-ratio. The t-ratio is a ratio of a parameter estimate to

its standard error. Similar to the F-ratio, the t-ratio is used

to assess the significance of individual regression

coefficients (parameters). Each computed t-ratio is

compared with the pre-determined t-ratio based on the

Table 4. A typical ANOVA table from the multiple linear regression analysis.

Source Degree of freedom (DF) Sum of squares (SS) Mean square (MS) F-ratio

Regression model p SSR MSR ¼ SSR/p MSR/MSE
Error n 2 p 2 1 SSE MSE ¼ SSE/(n 2 p 2 1)
Total n 2 1 SSTO

Note: SSR ¼ regression SS; SSE ¼ error SS; SSTO ¼ total SS; MSR ¼ MS due to regression and MSE ¼ MS due to error.
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significance level (a value) specified. The probability

where the calculated t-ratio is equal to or greater than the

pre-determined t-ratio is obtained and compared with the

specified significance level. If the probability is less than

the significance level, the corresponding independent

variable has a significant impact on the dependent variable.

Therefore, significant independent variables contributing

to the variation in the APA rut results can be found.

Dimensional analysis by Buckingham p-theorem

The Buckingham p-theorem is a key theorem in

dimensional analysis. This theorem offers an idea for the

form of solutions for theoretical analyses and experimental

design. The Buckingham (1914) p-theorem states that

‘If there are n variables in a problem and these variables

contain m primary physical dimensions (for example, M

(mass), L (length), T (time), Q (temperature)), the equation

relating all the variables will have (n–m) dimensionless

groups.’ The dimensionless groups are typically rep-

resented as p groups and they can further be related in a

more specific form when actual experimental data (or

observations) are available.

For the theorem, there are two conditions: (1) each of

the fundamental dimensions must appear in at least one of

the n variables and (2) the dimensionless p groups must be

independent of each other and no one group should be

formed by multiplying together powers of other groups.

Using the basic concept of the theorem, a routine

procedure can be written as below:

(1) Clearly define the problem and identify important

variables to be considered.

(2) Express each of the n variables in terms of its

fundamental dimensions {M, L, T, Q}.

(3) Determine the number of p groups, j ¼ n 2 m.

(4) Form j dimensionless p groups and check whether

they are all indeed dimensionless.

(5) Express the result in the form of p1 ¼ F(p2, . . . ,

pn2m).

(6) And compare the relationship with the exper-

imental data available.

As presented above, the Buckingham p-theorem is used

to show a physical relationship among variables. The

dimensionless p-groups are usually found from the m

variables according to an intuitive process. Once the equation

expressing the relationship between the variables is defined

based on the experimental data available, this process can

potentially find the sensitivity and/or significance among the

variables affecting a physical problem.

Analysis results and discussion

To conduct multiple linear regression analysis, the

Statistical Analysis Software was used. Two sets (i.e.

SP-4 and SP-5 mixtures) of APA data from Nebraska and

one set of APA data obtained from Kentucky were used to

conduct the statistical analysis, while the dimensional

analysis was only applied to the SP-4 Nebraska data-set.

This is because other data-sets were incomplete to

accomplish the dimensional analysis. The analysis results

from the statistical approach were then compared with the

results from the dimensional analysis.

Statistical analysis results of SP-4 mixture data

As mentioned earlier and illustrated in Figure 1, data

diagnostic tests were performed first. Table 5 presents the

correlations among eight independent variables selected

for the analysis. Assuming that variables are highly

correlated if their correlation factor is greater than 0.5,

CAA1 is highly correlated with CAA2, as given in the

table. In order to avoid multi-collinearity due to high

correlations among variables, variable modification is

required. One of the typical ways to modify the variables is

to combine two variables into a single variable by addition.

Thus, CAA1 was added to CAA2 to produce a single

variable, CAA, for this study.

After the multi-collinearity diagnostic test was

completed, outliers in the data-set were detected. As

mentioned earlier, the DFBETAS technique was employed

to search for influential observations (outliers). A total of

seven outliers were found and removed from the data-set.

The normality of the data-set was then checked through

Table 5. Correlations among independent variables (SP-4 mixture).

Variable NMAS PG Air void Binder content CAA1 CAA2 FAA Gradation

NMAS 1 20.064 20.073 20.465 0.101 0.125 20.064 20.407
PG 1 20.067 20.018 0.036 20.023 0.060 20.042
Air void 1 0.022 0.192 0.141 0.082 0.114
Binder content 1 20.117 0.007 0.361 0.437
CAA1 1 0.781 0.135 20.019
CAA2 Symmetry 1 0.081 20.037
FAA 1 0.079
Gradation 1
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the Shapiro–Wilk test to see whether the data-set satisfied

a normal distribution to accomplish the multiple linear

regression analysis. The Shapiro–Wilk test is one of

general normality tests designed to detect all departures

from normality. The test rejects the hypothesis of

normality when the P-value is less than or equal to 0.05.

Failing the normality test allows one to state with 95%

confidence that the data do not fit the normal distribution.

The Shapiro–Wilk test result confirmed a normal

distribution of the data.

Multiple linear regression analysis was then performed

using the data-set (a total of 84 APA observations after

removing the seven outliers). Table 6 presents the overall

significance of the test results, as justified by the F-ratio

and P-value (Pr. . F) obtained from the ANOVA table.

By comparing the P-value with a given a value, it was

possible to determine whether there was at least one

independent variable that affected the variation of the

dependent variable (i.e. APA rut results). Table 6 also

presents the significance of each individual regression

coefficient and its parameter estimate by providing t-test

results, which were useful to assess the significance of

each independent variable in the model. As mentioned

previously, if the P-value (i.e. Pr. . jtj) is less than the

specified significance level (a value), the independent

variable being considered is a significant factor affecting

the APA rut results. Popular levels of significance are 10%

(0.1), 5% (0.05), 1% (0.01) and 0.1% (0.001). The lower

the significance level, the stronger the evidence required.

Choosing level of significance is an arbitrary task, but for

many applications, a level of 5% or 1% is usually chosen,

for no better reason than that it is conventional. In this

study, 1% significance level (i.e. 0.01 of a value) was

chosen, since it is one of the two conventional choices

providing statistical significance with the stronger

evidence. To maintain the consistency of the analysis,

the same value of a (0.01) was applied to all cases.

For SP-4 mixture, the test statistics showed that a

meaningful relationship existed between the APA rut

results and a combination of five variables (i.e. NMAS,

Binder PG, Air Void, FAA and Gradation) via a multiple

linear regression model, since theP-value (0.0001) was less

than the specified a value (0.01). It should be noted that

CAAwas excluded in the table, because it was insignificant

in the process when forming the multiple linear regression

model. Among the variables (excluding the intercept)

considered, three variables (NMAS, binder PG and FAA)

were found to be significant at the a value of 0.01. By

analysing the parameter estimates of the three significant

variables, it can be noted that the negative sign of

coefficients indicates the reduced rutting susceptibility of

mixtures with stiffer binder, larger NMAS and greater FAA

value of aggregates in the mixture, which is in agreement

with common observations made by many researchers.

Statistical analysis results of SP-5 mixture data

For the SP-5 mixture, data diagnostic tests revealed a high

correlation between CAA1 and CAA2 (0.719) and three

outliers. Similar to the SP-4 case, CAA1 was added to the

CAA2 to produce a single variable (CAA), and all outliers

were removed from the data-set. A normality check by the

Shapiro–Wilk test was also performed and a normal

distribution was confirmed. Table 7 summarises the

analysis results including the ANOVA and the significance

of individual variables with their parameter estimates.

The P-value (Pr. . F) was 0.003, which was smaller than

the specified significance level (a ¼ 0.01). Therefore, the

model could be formed with a meaningful relationship

between the APA rut depth and independent variables.

Among the independent variables included in the model,

only the binder PG showed significance towards APA

rutting.

Statistical analysis results of Kentucky mixture data

As shown earlier in Table 1, the values of CAA1 and

CAA2 in the Kentucky mixture were identical (100/100).

Table 6. Analysis results of the SP-4 mixture.

Nebraska data (SP-4)

ANOVA F-ratio ¼ 8.63
Pr. . F ¼ 0.0001

Unstandardised coefficients Standardised coefficients

Variables Coefficient Standard error Coefficient t-Ratio Pr. . jtj

Intercept 8.156 2.167 0 3.76 0.0003
NMAS 20.062 0.014 20.465 24.63 0.0001
Binder PG 20.129 0.036 20.333 23.63 0.0005
Air void 20.056 0.036 20.144 21.57 0.1205
FAA 20.142 0.047 20.283 23.02 0.0035
Gradation 20.006 0.003 20.248 22.47 0.0158
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Therefore, the two angularity values were replaced with

one variable, CAA to conduct statistical analyses of the

Kentucky APA data. Due to this fact, data diagnostic tests

for the Kentucky mixture revealed no high correlation

among variables. Two outliers were removed, and data

normality was confirmed. Table 8 presents the multiple

linear regression analysis results.

Test statistics presented in Table 8 indicated that a

meaningful relationship exists between the APA rut results

and the independent variables, since the P-value (0.001)

was clearly less than the a value (0.01). Among the

independent variables involved, only one variable (binder

PG) was significant (Pr. . jtj: 0.001). The binder PG

produced a negative effect on performance, as observed in

the Nebraska mixtures. All three analyses results given in

Tables 6–8 obviously demonstrate that the APA rutting

performance is sensitive to the binder PG. Stiffer binders

(higher PG grade) were less susceptible to APA rutting

than softer ones, as expected.

Dimensional analysis results of SP-4 mixture data

The HMA specimen for the APA testing was modelled

as an elastic composite made up of aggregates, asphalt

binder and air voids, as illustrated in Figure 3. For

the dimensional analysis based on the Buckingham

p-theorem, the first step was to identify a functional

relationship for the APA rut depth in terms of the variables

that influence it. All variables included are presented in

Table 9. As presented in the table, the APA rutting

performance (rut ratio d) is related to input variables

categorised into three groups: variables associated with

load (F), geometry (w, D, H, G, S, Vv, Vs and Vb) and

material properties (ns, nb, Es and Eb).

In order to simplify the analysis, the HMA specimen

was assumed to be an isotropic, linear elastic and three-

phase (air, binder and aggregate) material subjected to a

static force (F). Table 9 also presents the characteristics of

each input variable: fixed or varied for the analysis. The

variable characteristics were determined by an examin-

ation of the APA test data (i.e. data obtained from SP-4

mixtures) used for this analysis. The APA testing was

performed by fixing the applied load (F), geometry (w, D

and H) and material properties (ns, nb and Es). All the other

variables (i.e. G, S, Vv, Vs, Vb and Eb) were different for

each APA specimen and consequently were regarded as

variables investigated to monitor their significance to the

APA rut results (d).

As noted above, a total of 14 variables (independent

and dependent) were incorporated, six of which were

considered potentially significant testing input variables

affecting the APA rut results. The units for all 14 variables

are presented in Table 9. As given in the table, there are

only three independent physical units: [L ], [M ] and [T ].

Table 8. Analysis results of the Kentucky mixture.

Kentucky data

ANOVA F-ratio ¼ 46.13
Pr. . F ¼ 0.001

Unstandardised coefficients Standardised coefficients

Variables Coefficient Standard error Coefficient t-Ratio Pr. . jtj

Intercept 0.163 0.053 0 3.09 0.012
NMAS 0.002 0.001 0.185 2.13 0.059
Binder PG 20.015 0.002 20.813 28.59 0.001
FAA 20.002 0.001 20.179 21.98 0.076

Table 7. Analysis results of the SP-5 mixture.

Nebraska data (SP-5)

ANOVA F-ratio ¼ 7.49
Pr. . F ¼ 0.003

Unstandardised coefficients Standardised coefficients

Variables Coefficient Standard error Coefficient t-Ratio Pr. . jtj

Intercept 0.505 0.314 0 1.61 0.128
Binder PG 20.136 0.033 20.804 24.17 0.001
% Binder 20.092 0.057 20.290 21.62 0.126
Gradation 0.011 0.005 0.470 2.36 0.032
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Then, as illustrated in the previous sub-section: Dimen-

sional analysis by Buckingham p-theorem; a total of 11

(14 2 3 ¼ 11) dimensionless parameters denoted as the

p-group can be formed, and the resulting model can be

expressed as

p1 ¼ Fðp2;p3; . . . ;p11Þ: ð2Þ

Each p needs to be a dimensionless parameter, as

expressed by

p1 ¼
d

H
;p2 ¼

F

EswD
;p3 ¼

F

EbwD
;p4 ¼

Vv

Vv þ V s þ Vb

;

p5 ¼
Vs

Vv þ Vs þ Vb

;p6 ¼
Vb

Vv þ V s þ Vb

;p7 ¼
w

D
;

p8 ¼ ns;p9 ¼ nb;p10 ¼ G;p11 ¼
S

w
: ð3Þ

Therefore, Equation (2) can be rewritten as

d

H
¼ F

F

EswD
;

F

EbwD
;
Vv

V
;
Vs

V
;
Vb

V
;
w

D
; ns; nb;G;

S

w

� �
;

ð4Þ

where V ¼ Vv þ Vs þ Vb.

Equation (4) is the final form of the model with one

output and 10 input parameters. Among the 10 input

parameters, only six parameters (F/EbwD, Vv/V, Vs/V, Vb/V,

G and S/w) were varied and considered potentially

significant input parameters affecting the APA output

parameter (d/H). In order to find further relationships and

the level of significance of each of these six input

parameters to the output parameter, SP-4 APA exper-

imental data were used to plot the input–output relations

as shown in Figure 4. All fitting curves presented in

the figure were found with simple power functions. The

strength of the relationship between each input and the

output was then quantified by the R 2 values, which infer

the ranking order of each variable in terms of its

significance to the APA rut results. As presented in the

figure, the binder stiffness is the factor most related to

the APA rut depth, which is in good agreement with the

general findings observed from the statistical analysis.

Summary and conclusions

Based on this study, the following summary and

conclusions can be drawn:

(1) Two analysis methods (statistical and dimen-

sional) were applied to the same set of HMA

performance test data to characterise the effects of

individual mixture variables on the performance

behaviour and to further assess the level of

significance of variables. For this study, two sets

of APA data from Nebraska and one set of APAT
ab
le
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data obtained from Kentucky were collected and

used to implement the two analysis methods.

(2) With the limited data-sets used in this study, both

the statistical analysis and the dimensional analysis

present comparable results in that the binder

stiffness of HMA mixtures is the most significant

variable affecting APA rut performance results. The

identical analysis results between the two

approaches imply the reasonableness of the

dimensional analysis method. The Buckingham p-

theorem demonstrated its characteristics as a simple

means of obtaining relationships that describe some

complex phenomenon even without understanding

the detailed mechanism of the phenomenon.

y = 1.97E–13x6.07

R2 = 0.326
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Figure 4. Relationship between d/H and other individual independent variables.
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(3) Based on the analysis results obtained from this

study, it can be implied that APA testing is sensitive

to the binder stiffness of a mixture, while the effects

of aggregates on HMA rutting performance is not

sensitively captured when the mixtures meet

volumetric requirements. This tendency is more

obvious from high-traffic-volume roadway mix-

tures where higher quality aggregates are used to

meet design requirements. However, it is somewhat

premature to make definite conclusions at this stage.

Additional data would be necessary to validate

findings.

(4) The integrated approach presented in this paper

demonstrates its potential applicability to general

mixture tests (both fundamental and simulative) in

characterising the effects of individual mixture

variables on the overall behaviour. It is expected

that fundamental test results can provide more

informative insights to examine the roles of

individual mixture variables and testing conditions

on overall mixture characteristics. This study

exemplifies only the APA test data for the

demonstration purpose; however, the technique

can be applied to other tests to identify the material

and/or mixture variables that significantly affect test

results and to determine the level of significance in a

simple manner.
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